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Summary

Deletion of UBE3A causes the neurodevelopmental disorder Angelman syndrome (AS) while 

duplication or triplication of UBE3A is linked to autism. These genetic findings suggest that the 

ubiquitin ligase activity of UBE3A must be tightly maintained to promote normal brain 

development. Here, we found that protein kinase A (PKA) phosphorylates UBE3A in a region 

outside the catalytic domain, at residue T485, and inhibits UBE3A activity towards itself and other 

substrates. A de novo autism-linked missense mutation disrupts this phosphorylation site, causing 

enhanced UBE3A activity in vitro, enhanced substrate turnover in patient-derived cells, and 

excessive dendritic spine development in the brain. Our study identifies PKA as an upstream 

regulator of UBE3A activity, and shows that an autism-linked mutation disrupts this 

phosphorylation control. Moreover, our findings implicate excessive UBE3A activity and the 

resulting synaptic dysfunction to autism pathogenesis.
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Introduction

Autism is a genetically heterogeneous disorder associated with synaptic deficits, social 

impairment, and stereotyped behaviors. Recent studies indicate that copy number variations 

and de novo mutations in hundreds of genes can increase the risk for autism (Chen et al., 

2015; De Rubeis et al., 2014; Iossifov et al., 2014). While some of these recently identified 

de novo mutations introduce stop codons and hence likely disrupt gene function, most (79%; 

1,500 / 1,891) introduce missense mutations of unknown significance (Iossifov et al., 2014). 

How these missense mutations—representing the bulk of what has been discovered in 

exome sequencing studies—affect protein function or contribute to disease is currently 

unknown.

Intriguingly, we noticed that one of these missense mutations was in UBE3A. UBE3A is 

associated with cervical cancer and two neurodevelopmental disorders—Angelman 

syndrome (AS) and autism. Duplication or triplication of maternally inherited 15q11-13, the 

chromosomal location where UBE3A resides, is one of the most common cytogenetic events 

associated with autism (Glessner et al., 2009; Hogart et al., 2010). Individuals with one extra 

maternal copy of 15q11-13 display partial autism penetrance, whereas individuals with two 

extra copies display almost complete penetrance (Hogart et al., 2010; Urraca et al., 2013). 

UBE3A is the only gene in this region that is consistently expressed from the maternal, but 

not paternal, allele in mature neurons (Albrecht et al., 1997; Rougeulle et al., 1997; Vu and 

Hoffman, 1997), suggesting that abnormally elevated levels of UBE3A contribute to autism 

in 15q11-13 duplication syndrome. However, UBE3A is not the only gene duplicated in this 

syndrome, and pathogenicity in individuals with paternal 15q11-13 duplication has been 

reported, raising the possibility that additional genes in the region might increase autism risk 

(Germain et al., 2014; Urraca et al., 2013).

There is no doubt that deletion or null mutation of the maternal UBE3A allele causes AS, a 

disorder characterized by a happy demeanor with frequent smiling, speech impairment, 
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severe intellectual disability, motor dysfunction, and seizures (Jiang et al., 1998; Kishino et 

al., 1997; Mabb et al., 2011). In mice, deletion of Ube3a impairs synapse development and 

plasticity, and recapitulates several neurobehavioral symptoms of AS (Greer et al., 2010; 

Jiang et al., 1998; Margolis et al., 2010; Sato and Stryker, 2010; Wallace et al., 2012; 

Yashiro et al., 2009).

UBE3A encodes a HECT domain E3 ubiquitin ligase that targets substrate proteins, 

including itself, for degradation (de Bie and Ciechanover, 2011). Given that loss of UBE3A 

causes AS, while increases in UBE3A are associated with autism, UBE3A levels and activity 

are likely to be under tight control during normal brain development. Autoregulation of 

UBE3A via self-targeted degradation is cited as a mechanism for maintaining UBE3A levels 

(de Bie and Ciechanover, 2011; Mabb et al., 2011; Nuber et al., 1998). However, such a 

mechanism is likely to be overly simplistic, as unchecked self-degradation could lead to 

self-elimination. We thus speculated that additional mechanisms might exist to control 

UBE3A activity. Here, we systematically examined how a large number of disease-linked 

UBE3A missense mutations affect protein levels and activity. These analyses revealed that 

UBE3A is inhibited by PKA phosphorylation at T485, a site that was recently found to be 

mutated in an autism proband (Iossifov et al., 2014). Mutation of this phosphorylation site 

abnormally elevates UBE3A activity and increases synapse number in vivo. Our study 

describes an upstream regulatory mechanism for UBE3A and provides a comprehensive 

understanding of how missense mutations linked to AS and autism affect UBE3A protein 

function.

Results

AS-linked missense mutations inactivate UBE3A via distinct mechanisms

Most cases of AS arise due to a deletion of the maternal copy of UBE3A, but some AS 

patients (~10%) harbor missense mutations in the coding region of UBE3A (Sadikovic et al., 

2014). Some of these AS-linked mutations cluster near the catalytic cysteine (C820) and 

disrupt the ubiquitin ligase activity of UBE3A (Sadikovic et al., 2014). However, the 

majority of these mutations are located far from the catalytic site. Precisely how most of 

these mutations, each of which changes a single amino acid, disrupt UBE3A function has 

not been resolved. After mapping all reported AS-linked missense mutations relative to the 

known domains in UBE3A, we noticed that these missense mutations were not randomly 

distributed, but clustered within distinct regions (Figure 1A). Based on this observation, we 

hypothesized there might be additional domains within UBE3A that control enzyme activity 

or stability.

Like most E3 ubiquitin ligases, UBE3A mediates the ubiquitination of target proteins and 

itself (de Bie and Ciechanover, 2011; Kumar et al., 1999). These missense mutations could 

thus disrupt UBE3A in four different ways, each of which can be distinguished 

experimentally (Figure 1B, Table S1): 1) by affecting protein stability independent of ligase 

activity, 2) by promoting self-targeted degradation, 3) by disrupting the catalytic domain, or 

4) by preventing UBE3A from targeting substrates for degradation. To determine if AS-

linked missense mutations affect UBE3A stability independent of ligase activity, we 

introduced missense mutations (Figure 1A; highlighted in bold) into a ligase-dead (LD; 
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C820A) version of human UBE3A, transfected expression constructs into HEK293T cells, 

and then monitored protein levels by western blotting. Of the 18 mutations tested, the 

protein levels of 8 were significantly lower than UBE3A-LD control (Figure 2A and 2B; 

Table S1). These data indicate that many AS-linked missense mutations destabilize UBE3A 

independent of its ligase activity.

We then introduced the remaining seven mutations into catalytically active wild-type (WT) 

UBE3A and found that protein levels of two mutants (T106P and I130T) were significantly 

lower than WT UBE3A, whereas the R482P mutant was detected at significantly higher 

levels (Figure 2C and 2D; Table S1). These findings suggested that the T106P and I130T 

mutations promoted hyperactive self-degradation of UBE3A, a novel gain-of-function 

mechanism that reduces UBE3A levels, while the R482P mutation impaired UBE3A 

activity. Endogenous UBE3A activity did not contribute to the effects of these mutants, as 

endogenous enzyme levels were very low in HEK293T cells (Figure S1A). We tested 

additional AS-linked missense mutations at T106 or near R482. T106K promoted self-

degradation like T106P, while R477P and M478I impaired activity like R482P (Figure S1B-

E, Table S1).

In further support that the T106P and I130T mutations promote self-degradation, protein 

levels of these mutants were rescued (elevated) following proteasomal inhibition with 

MG-132 (Figure S1F and S1G), and high molecular weight polyubiquitinated conjugates 

were detected on these mutants only when the ligase domain was intact (Figure S1H). 

Conversely, polyubiquitinated UBE3A conjugates were not detected on the R482P mutant 

(Figure S1H) and absent or reduced for the R477P and M478I mutants (Figure S1I), 

suggesting that these mutants had little or no ubiquitin ligase activity. Likewise, when 

transfected into primary mouse cortical neuron cultures, the protein levels of the T106P and 

I130P mutants were lower relative to WT UBE3A, while the R482P mutant was detected at 

higher levels (Figure 2E – 2G).

We next evaluated the extent to which the T106P, I130T, and R482P mutants targeted the 

UBE3A substrate HHR23A for degradation in HEK293T cells (Kumar et al., 1999). We 

found that protein levels of the UBE3A T106P and I130T mutants were low relative to WT 

UBE3A, and HHR23A levels were unaffected (Figure S1J and S1K). Moreover, the T106P 

and I130T mutants did not effectively polyubiquitinate HHR23A in cells that were treated 

with the proteasome inhibitor MG-132 (Figure S1L). These data collectively suggest that the 

T106P and I130T mutations endowed a gain-of-function that was specific for UBE3A self-

degradation, which paradoxically drives UBE3A loss-of-function. In contrast, the UBE3A 

R482P mutation elevated protein levels of UBE3A and HHR23A (Figure S1J and S1K), 

further indicating loss-of-function.

The remaining four mutations (R39H, A178T, I329T, E550L) did not significantly alter 

UBE3A protein levels (Figure 2C and 2D; Table S1). Two of these mutations (R39H, 

A178T) are now recognized as benign variants and are not associated with AS (Malzac et 

al., 1998; Sadikovic et al., 2014). The E550L mutant does not effectively target the UBE3A 

substrate HHR23A for ubiquitination (Cooper et al., 2004), but how the I329T mutation 

affects UBE3A function is unknown (Camprubi et al., 2009). To determine if the I329T 
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mutant is also defective in targeting substrates, we examined polyubiquitination of HHR23A 

relative to three controls (R39H, A178T and E550L). As expected, we found that the benign 

R39H and A178T variants polyubiquitinated HHR23A at levels similar to WT UBE3A 

(Figure S1M). In contrast, the I329T mutant behaved like the E550L mutant, and did not 

polyubiquitinate HHR23A to the same extent as WT UBE3A (Figure S1M). This reduction 

in substrate ubiquitination was reflected in steady-state HHR23A levels, which were 

elevated when co-expressed with the I329T and E550L mutants (Figure S1N and S1O). 

Collectively, our data indicate that AS-linked missense mutations inactivate UBE3A via 

distinct mechanisms: 1) through ligase-independent protein destabilization, 2) through 

enhanced ligase-dependent degradation of itself only, or 3) through failure to target 

substrates for ubiquitination. These experiments reveal how numerous AS-linked mutations 

disrupt UBE3A function and hence contribute to AS.

Phosphorylation inhibits UBE3A

The R477P, M478I, and R482P mutations are tightly clustered with other missense 

mutations (Figure 1A) and are located within the α1 helix of UBE3A, a highly conserved 

structural element that controls enzyme activity in other HECT domain ubiquitin ligases 

(Pandya et al., 2010; Ronchi et al., 2014). In addition, arginine 482 forms a canonical PKA 

consensus motif (Songyang et al., 1994), with threonine 485 (T485) as the putative phospho-

acceptor residue (Figure 3A). Given that other disease-relevant ubiquitin ligases are 

regulated by phosphorylation (Cohen, 2014; Ko et al., 2010), these observations suggested 

that phosphorylation at this site might control UBE3A activity. In support of this possibility, 

we found that T485 was phosphorylated using mass spectrometry (Figure S2A). We then 

generated a phospho-T485 (pT485) antibody and confirmed its specificity experimentally: 

1) this antibody did not recognize UBE3A when T485 was mutated to alanine (T485A), a 

residue that cannot be phosphorylated (Figure S2B and S2C). 2) The antibody recognized a 

single band at ~110 kD in whole brain lysates that was sensitive to phosphatase treatment 

(Figure 3B). 3) This antibody was specific for UBE3A, as staining was detected in cultured 

cortical neurons from WT mice by western blot (Figure 3C) and by immunocytochemistry 

(Figure 3D), but was not detected in cultures from UBE3A-deficient (Ube3am−/p+) mice, 

which model AS. In immature neurons cultured for 10 days in vitro (DIV 10), phospho-

UBE3A staining was cytoplasmic, and present in dendritic and axonal projections, but was 

largely excluded from the nucleus (Figure 3D, Figure S2E and S2F). This contrasted with 

total UBE3A, which was also in the nucleus (Figure 3D, Figure S2E and S2F). In mature 

neurons (DIV 18), UBE3A staining was predominantly nuclear, as expected (Sato and 

Stryker, 2010; Yashiro et al., 2009), while weak phospho-UBE3A immunoreactivity was 

detected in the cytoplasm and in dendritic spines (Figure S2G and S2H). These data suggest 

that endogenous UBE3A is phosphorylated at T485 in neurons and is excluded from the 

nucleus relative to total UBE3A.

To study the functional significance of T485 phosphorylation, we transfected HEK293T 

cells with UBE3A constructs harboring the T485A mutation (which cannot be 

phosphorylated; Figure S2B and S2C), or a phospho-mimetic (T485E) mutation. We found 

that the T485A mutant was detected at low levels (40.0% ± 4.9), whereas a ligase-dead 

version of T485A (T485A, LD) was detected at higher levels (204.7% ± 26.5) relative to 
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WT UBE3A (Figure 4A and 4B). The phospho-mimetic mutant (T485E) was detected at 

higher levels (232.1% ± 20.5) relative to WT UBE3A (Figure 4A and 4B). Furthermore, 

inhibiting protein synthesis with cycloheximide showed that the phospho-mimetic T485E 

mutant had a longer protein half-life when compared to the T485A mutant (Figure S3A and 

S3B). Collectively, these data suggest that phosphorylation at T485 inhibits self-

ubiquitination of UBE3A, thereby increasing UBE3A levels, while dephosphorylation of 

T485 increases UBE3A activity and self-degradation. Indeed, ubiquitin-conjugated forms of 

UBE3A were observed with the T485A mutant but were not observed with the T485E 

mutant (Figure 4C). And, levels of T485A were elevated when the proteasome was inhibited 

with MG-132 (Figure S3C and S3D). Similar results were obtained in cortical neurons—the 

T485A mutation reduced UBE3A levels in neurons as compared to WT UBE3A, whereas 

the T485E mutation stabilized UBE3A levels (Figure 4D – 4F).

Our mass spectrometry analyses indicated that serine 489 (S489) was also phosphorylated 

(Figure S2D). And, the neighboring serine 480 (S480) residue is located within a conserved 

consensus site for Akt phosphorylation (Figure S3E). We mutated each potential 

phosphorylation site in this region (S489, S480, and Y488) to residues that cannot be 

phosphorylated (Ala or Phe) then measured UBE3A levels by western blotting. Unlike the 

T485A mutation, none of these additional phosphorylation site mutations altered UBE3A 

levels (Figure S3F and S3G), suggesting that T485 is the principal site for posttranslational 

regulation in this region.

Next, we examined the extent to which the T485A and T485E mutants targeted substrates 

for ubiquitination. In vitro ubiquitination reactions were performed with S5a, a non-specific 

model substrate that has been used to assess the activities of various ubiquitin ligases 

(Jacobson et al., 2014). We performed our reactions with WT or UBE3A mutants expressed 

and purified from HEK293T cells. We found that the T485A mutant accelerated the 

formation of S5a ubiquitin conjugates as compared to WT UBE3A, whereas the UBE3A 

T485E mutant behaved like the ligase-dead UBE3A mutant (Figure 4G). We next monitored 

ubiquitination in cells using HHR23A. Consistent with our in vitro assays, the T485A 

mutant was hyperactive, generating more HHR23A-ubiquitin conjugates relative to WT 

UBE3A, whereas UBE3A-T485E did not ubiquitinate HHR23A (Figure 4H). Moreover, 

HHR23A levels were directly correlated with UBE3A levels in cells (Figure 4I and 4J). 

Taken together, these data suggest that phosphorylation at T485 inhibits the ubiquitin ligase 

activity of UBE3A towards itself and its substrates.

De novo UBE3A T485A mutation in an autism proband

As part of a recent whole exome sequencing study, Iossifov and colleagues identified one 

autism proband, out of thousands of probands sequenced, with a de novo missense mutation 

in UBE3A (Iossifov et al., 2014). This one proband was characterized with autistic features, 

near normal IQ, and possessed an A:G substitution at chromosome 15:25,615,808; 

generating the same T485A missense mutation that, as we found above, disrupts the PKA 

phosphorylation site. We obtained immortalized lymphocyte cell lines from the affected 

child and the parents (Family ID: 13873) and sequenced PCR amplified fragments of 
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genomic DNA encompassing T485. This analysis confirmed that the T485A mutation was 

present only in the child with autism (Figure 5A).

Next, we assessed the relative abundance of endogenous substrates (UBE3A, S5a, and 

HHR23A) in lymphocyte-derived cell lines from the affected child and unaffected parents. 

Remarkably, all three substrates were significantly reduced in cells from the proband 

relative to the parents (Figure 5B – E). Collectively, our experiments indicate that T485A 

disables phosphorylation control over UBE3A ubiquitin ligase activity, leading to 

hyperactivation of UBE3A and enhanced targeting of itself and other substrates for 

degradation.

PKA is an upstream regulator of UBE3A

Since T485 is located within a canonical PKA consensus motif, we next evaluated the extent 

to which alterations in PKA activity influence UBE3A protein levels. We first performed 

co-immunoprecipitation experiments from cortical neuron lysates derived from postnatal 

day 1 (P1), a time when UBE3A phosphorylation peaks in the cortex (Figure S4A and S4B). 

We found that UBE3A can exist in a complex with the catalytic subunit of PKA (Figure 

6A). Next, we tested whether UBE3A is a substrate of PKA by performing an in vitro kinase 

assay with recombinant proteins and monitoring UBE3A phosphorylation using our 

phospho-specific antibody. We found that PKA phosphorylates UBE3A at T485 in a time-

dependent manner, demonstrating that UBE3A is a direct substrate of PKA (Figure 6B and 

6C). We next assessed the functional significance of PKA phosphorylation on UBE3A 

ubiquitin ligase activity. We subjected phosphorylated UBE3A from our in vitro PKA 

reaction to an in vitro ubiquitination reaction and found that phosphorylation profoundly 

inhibited UBE3A ubiquitin ligase activity (Figure 6D). This effect was specific to 

phosphorylation at T485, as PKA was incapable of inhibiting the ubiquitin ligase activity of 

the T485A mutant (Figure 6D). Likewise, co-expression of WT UBE3A with increasing 

amounts of constitutively active PKA (PKA-CA) led to increased levels of HHR23A, while 

HHR23A levels remained low in cells expressing UBE3A-T485A and PKA-CA (Figure 

S4C, S4D). These data suggest that PKA phosphorylation at T485 inhibits UBE3A ubiquitin 

ligase activity in cells.

In neurons, overexpression of a dominant-negative PKA mutant (PKA-DN) or expression of 

GFP fused to the PKA-specific inhibitory peptide PKI, resulted in markedly reduced basal 

phospho-UBE3A levels (Figure 6E and 6F). UBE3A phosphorylation at T485 was also 

reduced by KCl-induced depolarization (Figure S4E and S4F), suggesting strong activation 

of an upstream UBE3A phosphatase by neuronal activity. In contrast, phosphorylation was 

induced acutely with pharmacological activators of PKA, including agents that stimulate 

cyclic-AMP (cAMP) production, prevent cAMP breakdown, and activate Gαs signaling 

(Figure 6G and 6H). The PKA inhibitor KT5720 (5 μM) blocked all of these effects (Figure 

6G and 6H). Moreover, we found that WT UBE3A levels increased when co-transfected 

with PKA-CA and decreased when co-transfected with PKA-DN, while the protein levels of 

the T485A mutant remained lower and the T485E mutant remained higher than WT UBE3A 

(Figure 6I and 6J). Self-degradation of the hyperactive AS disease-causing mutants (T106P 
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and I130T) could likewise be rescued by co-expressing PKA-CA or by introducing the 

phospho-mimetic T485E mutation (Figure S4G and S4H).

Our findings also suggested that it should be possible to inhibit self-targeted UBE3A 

degradation by chronically increasing PKA activity. Indeed, long-term treatment (48 h) of 

neuronal cultures with forskolin or a phosphodieterase-4 inhibitor (rolipram) significantly 

increased UBE3A protein levels (Figure 6K and 6L). Altogether, these genetic and 

pharmacological data provide direct evidence that PKA is the predominant upstream protein 

kinase that phosphorylates UBE3A at T485.

Our findings raise the question of precisely how phosphorylation controls UBE3A ubiquitin 

ligase activity. Previous mapping experiments identified a roughly ~500 amino acid domain 

(residues ~280 – 768) in UBE3A that is required for intermolecular self-ubiquitination and 

interaction with E6-dependent substrates (Huibregtse et al., 1993; Nuber et al., 1998). T485 

is located centrally within this domain, thus we tested whether modifications at T485 affect 

substrate binding. Indeed, the phospho-mutant (T485A) showed strong interaction with itself 

and with HHR23A in pulldown experiments, while WT UBE3A and the phospho-mimetic 

mutant (T485E) showed little to no interaction with substrates (Figure S4I and S4J). These 

data suggest that phosphorylation prevents UBE3A from binding to its substrate, hence 

preventing UBE3A from marking substrates for degradation.

Phosphorylation does not appear to affect other aspects of UBE3A catalysis. For example, 

the T485E phospho-mimetic mutant retained its ability to form a thioester bond with 

ubiquitin (Figure S4K). This suggested that phosphorylation does not inhibit the transfer of 

ubiquitin from the E2 enzyme, and does not inhibit the conjugation of ubiquitin to the 

catalytic cysteine of UBE3A. Moreover, the active form of UBE3A has been proposed to 

exist as a homo-trimeric complex (Ronchi et al., 2014). However, we did not detect 

homomeric interaction with WT or T485E UBE3A (Figure S4I), and the T485A mutant 

retained activity (as evidence by lower protein levels relative to WT) when harboring a 

mutation (F727D) that reportedly destabilizes trimeric UBE3A (Figure S4L and S4M).

Disruption of UBE3A phosphorylation impairs dendritic spine development in vivo

A previous study found that chronic pharmacological inhibition of PKA led to increased 

dendritic spine densities along with supernumerary synapses (Lu et al., 2011). To determine 

if this effect was mediated by UBE3A, we chronically treated E15.5 neurons from WT and 

Ube3a m−/p+ mice with the small molecule inhibitor KT5720 (on DIV 19), then processed 

cells for the excitatory postsynaptic marker PSD-95 and the excitatory presynaptic marker 

vGLUT1 (Figure 7A and 7B). Consistent with Lu and colleagues, we also found that WT 

neurons treated with KT5720 exhibited a significant increase in the densities of spines 

positive for PSD-95 and vGLUT1 when compared to DMSO (Figure 7A and 7C; WT 

DMSO, 0.54 ± 0.05; WT KT5720, 0.81 ± 0.05, spines/μm of dendrite). Notably however, 

this effect was absent in Ube3a m−/p+ neurons (Figure 7B and 7D; Ube3a m−/p+ DMSO 0.56 

± 0.04; Ube3a m−/p+ KT5720, 0.53 ± 0.05, spines/μm of dendrite). For WT neurons, these 

changes were accompanied by an increase in the number of paired or unpaired vGLUT1 and 

PSD-95 puncta (Figure S5A and S5B), but they were not accompanied by obvious 

morphological changes in spines (Fig. S5B). Moreover, chronic KT5720 treatment also 
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reduced levels of phosphorylated UBE3A in spines and dendrites (Figure S5C – S5E). 

Altogether, these experiments suggest that UBE3A is a principal effector of PKA-dependent 

dendritic spine development.

Lastly, we investigated whether phosphorylation at T485 affected spine formation in vivo by 

introducing GFP, WT UBE3A, the T485A, or the T485E mutants through in utero 

electroporation into the cerebral cortex of E15.5 animals. We then analyzed spines on 

primary basal dendrites of layer 2/3 pyramidal neurons in the somatosensory cortex of 

young adult (postnatal day 30; P30) mice (Figure 7E). Animals overexpressing WT UBE3A 

showed a modest increase in dendritic spine densities relative to the GFP control while spine 

density increased by ~58% in mice expressing the hyperactive T485A mutant (Figure 7F 

and 7G; GFP, 1.16 ± 0.05; UBE3A WT, 1.45 ± 0.08; UBE3A-T485A, 1.83 ± 0.08 

spines/μm dendrite). In addition, dendritic head widths for both WT UBE3A and the T485A 

mutant were significantly decreased (Figure S5F and S5G), indicating subtle alterations to 

spine morphologies in addition to changes in density. In contrast, expression of the inactive 

phospho-mimetic T485E mutant had no effect on spine density (1.06 ± 0.06 spines/μm 

dendrite) or morphology relative to GFP only controls (Figure 7F and 7G, Figure S5F and 

S5G). Thus, expression of a constitutively active, phosphorylation defective version of 

UBE3A (T485A) promoted excessive spine formation that persisted into adulthood, while 

expression of the inactive phospho-mimetic mutant did not alter spine number relative to the 

control. These data collectively suggest that PKA dependent phosphorylation of UBE3A 

controls proper spine formation during brain development (Figure 7H).

Discussion

Phosphorylation at T485 inhibits UBE3A ubiquitin ligase activity

We noticed that numerous disease-linked missense mutations in UBE3A were distant from 

the active site and clustered together. At the epicenter of one of these mutational hotspots 

was a PKA phosphorylation site (T485). We found that this site can be phosphorylated in 

vitro, in cells, in neurons, and in the brain, and that phosphorylation of this site inhibits 

UBE3A ubiquitin ligase activity towards itself and its substrates. Our in vitro and in vivo 

experiments, including experiments with lymphocytes from an autism proband harboring a 

phospho-mutant T485A missense mutation, shows that T485 phosphorylation serves as a 

master switch—disengaging UBE3A from substrates and hence blocking UBE3A enzymatic 

activity. Our study shows that UBE3A is regulated by phosphorylation, and that an autism-

linked mutation disables this phosphorylation control and impairs synapse formation in vivo.

Two additional de novo missense variants were identified in the autism proband we studied 

(Family ID: 13873). These variants include a V49I substitution in histone H2B type 1-J 

(HIST1H2BJ) and an E90K substitution in laminin α4 (LAMA4) (Iossifov et al., 2014). 

Although both variants await experimental characterization, existing data do not support a 

role for these variants in autism pathology. V49I is a conservative substitution, and neither 

HIST1H2BJ nor LAMA4 are expressed in the human brain (Su et al., 2004).

Collectively, our findings suggest that abnormal elevation of UBE3A activity, caused by the 

T485A missense mutation, contributes to autism pathology in this individual. Identifying 
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additional autism-linked mutations that disrupt UBE3A T485 phosphorylation will 

strengthen this assertion. Moreover, our work provides further evidence that excess UBE3A 

activity in the brain increases risk for autism. Future studies will be needed to assess 

phenotypic similarities between this genetically precise T485A point mutation that 

hyperactivates UBE3A, 15q11-13 duplication that elevates UBE3A and other genes, and a 

recently identified family with a 15q11.2 duplication that encompasses only UBE3A and that 

segregates with autistic features, developmental delay, depression and schizophrenia (Noor 

et al., 2015).

AS-linked mutations destabilize UBE3A via distinct loss- and gain-of-function mechanisms

We found that most AS-linked missense mutations destabilize UBE3A independent of 

ubiquitin ligase activity, making them classic loss-of-function mutations. Our work also 

identified a cluster of mutations (R477P, M478I, R482P) that were distant from the active 

site that blocked UBE3A substrate targeting. The R477P, M478I, and R482P mutations all 

reside near the T485 phosphorylation site, and these mutations inhibited UBE3A in a 

manner analogous to phosphorylation at T485. Given the importance of this region for 

substrate and homomeric interactions (Figure S4I and S4J), these mutations likely act 

independent of UBE3A phosphorylation and disrupt the docking of substrates to UBE3A, 

thereby causing a loss-of-function. In support of this mechanism, we found that the R482P 

mutation dominantly inhibited the hyperactive T485A mutation (Figure S5H and S5I).

Our study also identified mutations that differentially affect UBE3A targeting of itself and 

other substrates. One cluster of mutations (T106P, T106K, I130T) enhanced self-targeting 

without affecting the targeting of other substrates. The converse was found with mutations 

that flank the α1 helical region (I329T, E550L). These mutations blocked substrate targeting 

without affecting self-targeting. Collectively, our study highlights how a rigorous 

characterization of disease-linked missense mutations can provide fundamental new insights 

into enzyme catalysis and enzyme regulation under normal and pathological conditions.

Hyperactive UBE3A drives abnormal spine formation in the brain

We found that phosphorylation of UBE3A peaks in the first week of postnatal life in the 

mouse cerebral cortex, which corresponds to a developmental window when synaptic 

plasticity is driven primarily by PKA signaling (Lu et al., 2007; Yasuda et al., 2003). PKA 

might thus regulate UBE3A activity within the first ~7 days of life to allow for the proper 

progression of synapse development. In support of this idea, we found that chronic PKA 

inhibition failed to increase dendritic spine density in Ube3a-deficient neurons, and 

overexpression of UBE3A-T485A, a mutant that cannot be phosphorylated, profoundly 

increased dendritic spine density in vivo. This increase in spine density persisted into young 

adulthood (P30), suggesting that the hyperactive UBE3A T485A mutant promotes long-

lasting structural changes in the brain. The T485A mutation was identified in a child with 

autism, a disorder associated with increased spine number (Hutsler and Zhang, 2010; 

Piochon et al., 2014; Tang et al., 2014), further suggesting the hyperactive UBE3A mutant 

contributes to autism pathology. In light of our findings, a reduction in PKA activity, which 

reduces phosphorylation at T485 and elevates UBE3A activity (Figure 7H), might contribute 

to autism in a larger number of patients than presently recognized.
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Lastly, our findings have therapeutic implications. We found that chronic treatment of 

neurons with pharmacological agents that stimulate PKA can turn down UBE3A activity 

(Figure 6K and 6L). This suggests it may be possible to reduce UBE3A activity in 

individuals with 15q11-13 duplication/triplication forms of autism using such agents. 

Excessive UBE3A activity is also associated with the vast majority of all cervical cancers 

(Pisani et al., 1999; Walboomers et al., 1999). Our findings thus raise the possibility that 

targeting upstream regulators of UBE3A could provide a general strategy for treating 

neurological disorders as well as cancers linked to excessive UBE3A activity.

Experimental Procedures

Animals

C57BL/6 WT and Ube3am−/p+ mouse lines and associated genotyping procedures have been 

previously described (Huang et al., 2012; Yashiro et al., 2009). All animal experiments were 

approved by the Institutional Animal Care and Use Committee of the University of North 

Carolina at Chapel Hill, and in accordance with NIH guidelines. Embryonic day 0.5 (E0.5) 

was defined as noon following initiation of timed mating.

Molecular biology

The nomenclature used in this study is based on the amino acid sequence of human UBE3A 

isoform I (accession: NP_570853.1). Detailed methods can be found in the Supplemental 

Information.

Primary Neuron Cultures

Neuronal cultures were prepared from E13.5 to E15.5 C57BL/6 WT or Ube3am−/p+ mice as 

previously described (Huang et al., 2012). Mouse cortices were dissected and trypsinized at 

37°C for 10 min, and dissociated with a fire-polished Pasteur pipette in plating medium 

(Neurobasal medium with 5% fetal bovine serum, Glutamax, B27 (Life Technologies)), and 

Antibiotic-Antimycotic. Dissociated neurons were seeded onto 12 or 24-well plates with or 

without coverslips coated with poly-D-lysine (0.1 mg/ml) at a density of about 526 

cells/mm2. Cultured neurons were maintained at 37°C with 5% CO2 and supplemented with 

Neurobasal medium containing 4.84 mg/ml Uridine 5′-triphosphate (Sigma), 2.46 mg/ml 5-

fluoro 2-deoxyuridine (Sigma), Glutamax, B27, and 1× Antibiotic-Antimycotic at days in 

vitro (DIV) 3 and 9.

In utero electroporation

Embryos (E15.5) from timed-pregnant CF-1 females were isolated and their lateral 

ventricles injected with 1-2 μg of plasmid DNA. Five electrical pulses were delivered at 30V 

(50 ms duration) with a 950 ms interval using 5 mm paddle electrodes. The embryos were 

then placed back into the female. After birth, the neonates were transferred on postnatal day 

1 (P1) to foster mothers. At P30, mice were sacrificed and their brains processed for 

analysis.
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Statistical Analysis

Statistical analyses were performed using the GraphPad Prism software. Statistical 

treatments for each experiment can be found in the Supplemental Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Characterization of UBE3A missense mutations
(A) Schematic showing human UBE3A with known functional domains, N-terminal zinc 

finger domain (Lemak et al., 2011), the location of non-truncating AS-linked mutations 

(black), and the de novo missense mutation identified in an autism proband (red). Mutations 

tested in our study are shown in bold and include benign variants (boxed).

(B) Approach used to determine how missense mutations disrupt UBE3A function. 

Mutations were introduced into a ligase-dead (LD, C820A) version of UBE3A. These 

mutants were expressed in HEK293T cells to identify mutations that were 1) unstable 

independent of UBE3A activity (all relative to UBE3A-LD). For the remaining stable 

mutants, ligase activity was restored (+Ligase) and the resulting constructs were transfected 

into HEK293T cells. This allowed us to identify mutations that 2) resulted in hyperactivity 

(these mutants would be detected at lower levels relative to WT UBE3A) or 3) reduced 

catalytic activity (these mutants would be detected at higher levels relative to WT UBE3A). 

Lastly, any UBE3A mutation (in +Ligase background) that was detected at equal levels 

relative to WT UBE3A was tested for its ability to target HHR23A for ubiquitination. This 

allowed us to identify mutations that 4) affect substrate targeting without affecting self-

targeted degradation, or are benign polymorphisms.
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Figure 2. AS-linked missense mutations in UBE3A cause loss-of-function via distinct mechanisms
(A and B) Representative western blot of protein levels for AS-linked mutations introduced 

into ligase-dead (LD) UBE3A and quantification (B). All UBE3A constructs were Myc-

tagged, contained an IRES-GFP to normalize for expression and transfection efficiency and 

were transfected into HEK293T cells. Values are shown as the percent ± standard error of 

UBE3A-LD levels. n=3-6/condition; **p<0.005, ***p<0.0005. See Supplemental 

Information for detailed statistical methods.

(C and D) Representative western blot of UBE3A mutants that possess ubiquitin ligase 

activity (+Ligase) and quantification (C). Values are shown as the mean percent ± standard 

error of WT UBE3A levels, n=4, *p<0.005, ***p<0.0005.
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(E - G) Immunofluorescence staining of Myc-tagged UBE3A and mutants in DIV 10 mouse 

cortical neurons, scale bar, 15 μm. Raw intensity values for Myc immunofluorescence (F) or 

Myc immunofluorescence normalized to GFP (G) are shown as the mean ± standard error. 

n=16-19 neurons/condition; *p<0.05, ***p<0.0005.
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Figure 3. UBE3A is phosphorylated at T485 in vivo
(A) Sequence alignment showing conservation of human UBE3A residues 473 – 538. Green 

boxes indicate non-conserved residues, asterisks indicate phosphorylation identified by mass 

spectrometry, T485 highlighted in red, and arrowheads indicate potential phosphorylation 

sites.

(B) A phosphatase-sensitive UBE3A band is recognized by the UBE3A (pT485) antibody in 

brain lysates. Numbers indicate the mean ratio of UBE3A pT485 intensity to total UBE3A 

intensity ± standard error, n=3, *p<0.05.

Yi et al. Page 18

Cell. Author manuscript; available in PMC 2016 August 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(C) Protein lysates from DIV 10 WT and Ube3a-deficient (Ube3am−/p+) cortical neuron 

cultures were probed with the UBE3A pT485 antibody. The small amount of UBE3A 

remaining originates from non-neuronal cells that biallelically express UBE3A. Phospho-

UBE3A levels were normalized to the neuron-specific marker Tuj1 and shown as the mean 

intensity ± standard error, n=3, *p<0.05.

(D) Confocal projections of UBE3A pT485 and total UBE3A in dissociated DIV10 cortical 

neurons from WT and Ube3am−/p+ embryos. Cell were transfected with GFP and labeled by 

immunofluorescence for UBE3A pT485 and total UBE3A. Arrows mark cells transfected 

with GFP, scale bar, 15 μm. The mean intensity ± standard error for pT485 

immunofluorescence is indicated. WT, n = 20; Ube3am−/p+ n = 20, ***p<0.005.
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Figure 4. Phosphorylation at T485 inhibits UBE3A ubiquitin ligase activity
(A and B) Representative western blot and quantification of HEK293T cells transfected 

with the indicated constructs. Values are shown as the percent of WT UBE3A levels ± 

standard error, n=4, *p<0.05, **p<0.005, ***p<0.0005.

(C) HEK293T cells transfected with the indicated Myc-UBE3A and FLAG-ubiquitin 

constructs were treated with the proteasome inhibitor MG-132 (30 μM, 4 h). UBE3A was 

immunoprecipitated using an anti-Myc antibody, and western blot probed with an anti-

FLAG antibody to detect ubiquitinated UBE3A.
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(D - F) Immunofluorescence staining and quantification of WT UBE3A and T485 mutants 

in DIV 10 mouse cortical neurons, scale bar 15 μm. Raw intensity values for Myc 

immunofluorescence (E) or Myc immunofluorescence normalized to GFP (F) are shown as 

the mean intensity ± standard error. T485A, n=14; T485E, n=16, *p<0.05, ***p<0.0005.

(G) In vitro ubiquitination assay was performed using S5a as the substrate and UBE3A 

mutants expressed and purified from HEK293T cells. Reactions were stopped after 4 h and 

the formation of high molecular weight polyubiquitinated S5a was monitored by western 

blot using an S5a antibody.

(H) HEK293T cells were transfected with the indicated Myc-UBE3A, FLAG-ubiquitin, and 

V5-HHR23A constructs and treated with MG-132. HHR23A was immunoprecipitated and 

western blot probed with an anti-FLAG antibody.

(I and J) Western blot and quantification of protein lysates from HEK293T cells transfected 

with the indicated constructs. Values are expressed as the mean percent ± standard error of 

protein levels in WT UBE3A expressing cells, n=4, ***p<0.0005.
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Figure 5. A de novo A>G (T485A) missense mutation in an autism proband enhances UBE3A 
substrate turnover
(A) A genomic region of UBE3A from the father, mother, and the autism proband was 

amplified and sequenced from immortalized lymphocyte cell lines (the Simon’s Simplex 

Collection; Family ID: 13873).

(B - E) Endogenous protein levels of (C) UBE3A, (D) HHR23A, and (E) S5a in lymphocyte 

cell lines were quantified by western blot analysis. Protein levels were normalized to actin 

and shown as mean intensity ± standard error, n = 3, *p<0.05, A.U., arbitrary units.
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Figure 6. PKA regulates UBE3A activity
(A) Co-immunoprecipitation from P1 mouse cortical lysate. Lysate was incubated with an 

anti-PKA-Cα antibody and the immunoprecipitates were analyzed by western blot with an 

anti-UBE3A antibody or no primary antibody as control.

(B and C) In vitro kinase assay showing phosphorylation of UBE3A by PKA. The reaction 

was performed with recombinant human PKA (catalytic subunit) and recombinant human 

UBE3A. Phosphorylation was monitored with the pT485 UBE3A antibody and quantified in 
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(C). Values are shown as the ratio of UBE3A pT485 intensity to total UBE3A intensity ± 

standard error, n=3, *p<0.05, ***p<0.0005.

(D) An in vitro kinase reaction was performed with or without PKA using WT UBE3A and 

UBE3A T485A expressed and purified from HEK293T cells, followed by an in vitro 

ubiquitin ligase reaction with the substrate S5a. Ubiquitination was monitored at time 0 and 

4 h by western blot with an anti-S5a antibody.

(E and F) PKA inhibition reduces basal levels of phosphorylated UBE3A in neurons. 

DIV11 mouse cortical neurons were transfected with GFP, PKA-DN, or GFP fused to the 

peptide inhibitor PKI (GFP-PKI). After 48 h, cells were fixed and immunostained with 

antibodies against GFP, UBE3A pT485, and total UBE3A. Arrowheads indicate the 

transfected GFP-positive neuron and arrows indicate nearby untransfected neurons, scale 

bar, 25 μm. UBE3A pT485A immunoreactivity is shown as the mean intensity ± standard 

error in (F). GFP: n=12, PKA-DN: n=16, GFP-PKI: n=16, ***p<0.0005.

(G and H) Phosphorylation of UBE3A T485 in dissociated DIV11 mouse cortical neurons 

following stimulation with forskolin (15 μM, 1 h), rolipram (75 μM, 1 h), isoproterenol (10 

μM, 1 h), and inhibition of PKA with KT5720 (5 μM). (H) Quantification. Values were 

normalized to total UBE3A levels and are the mean percentage ± standard error of basal 

UBE3A phosphorylation, n=5, *p<0.05, **p<0.005. Statistical comparisons were made 

between appropriate agonist and agonist + inhibitor conditions.

(I and J) UBE3A T485 mutants are resistant to changes in PKA activity. Western blot and 

quantification of the indicated constructs co-transfected into HEK293T cells with DN or 

CA-PKA. Values are shown as the mean percent ± standard error of WT UBE3A levels, 

n=6, **p<0.005, ***p<0.0005.

(K and L) Chronic PKA activation increases the UBE3A levels in neurons. DIV 11 neurons 

were cultured for 48 h in the presence of 1 μM forskolin or 5 μM rolipram, UBE3A levels 

were analyzed by western blot and (L) quantified. UBE3A values were normalized to Tuj1 

and are shown as the mean intensity ± standard error, n=3, *p<0.05.
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Figure 7. UBE3A T485A phospho-mutant abnormally increases dendritic spine formation in vivo
(A) Confocal projections showing synapse formation in WT neurons treated with vehicle 

(DMSO; left panels) or 1 μM KT5720 (right panels) for 48 h (DIV 19-21), scale bar, 4 μm.

(B) Confocal projections showing synapse formation in Ube3am−/p+ treated with vehicle 

(DMSO; left panels) or 1 μM KT5720 (right panels) for 48 h (DIV 19-21), scale bar, 4 μm. 

GFP is shown in green, PSD-95 immunofluorescence in red, and vGLUT1 

immunofluorescence in blue.
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(C and D) Quantification showing increased spine densities with KT5720 treatment in WT 

neurons (C) but not in Ube3am−/p+ neurons (D). Values are shown as the mean spine 

densities ± standard error. n=25-30 neurons/condition; ***p<0.0005.

(E) Low magnification confocal image showing transfected neurons (green) in the cortex of 

young adult (P30) animals after in utero electroporation (IUE) at E15.5. Nuclear stain DAPI 

(blue). Scale bar, 200 μm.

(F and G) Representative images of dendrites showing spine densities in neurons expressing 

the indicated constructs, and quantification (G); scale bar, 2 μm. Values are shown as mean 

spine densities ± standard error. n=20-25 neurons/condition, *p<0.05, ***p<0.0005.

(H) Model of PKA and UBE3A signaling in spine growth. Text size is proportional to 

enzyme activity level.
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